GenerativeModel

TransGAN|DeepLearningを用いた生成モデルの研究を俯瞰する #5

当シリーズでは生成モデルの研究や実装の俯瞰を行います。#4ではSemi-Supervised GAN(Semi-Supervised Learning with Generative Adversarial Networks)について取り扱いました。 #5では、GANにTransformerの考え方を導入した研究である、TransGAN(TransGAN:…

StyleGAN①(Abstract&Introduction)|Style Transferの研究を俯瞰する #5

2019年にNVIDIAが公開して話題になったStyle GANにもあるように、生成モデルへのStyle Transferの研究の導入が注目されています。当シリーズではそれを受けて、Style Transferの研究を俯瞰しながらStyle GANやStyle GAN2などの研究を取り扱っていきます。#1…

Semi-Supervised GAN(概要の把握)|DeepLearningを用いた生成モデルの研究を俯瞰する #4

当シリーズでは生成モデルの研究や実装にもフォーカスをあてられればということで、進めていきます。 GitHub - eriklindernoren/PyTorch-GAN: PyTorch implementations of Generative Adversarial Networks. 上記に様々なPyTorch実装や論文のリンクがまとめ…

Dual GAN(概要の把握)|DeepLearningを用いた生成モデルの研究を俯瞰する #3

当シリーズでは生成モデルの研究や実装にもフォーカスをあてられればということで、進めていきます。 GitHub - eriklindernoren/PyTorch-GAN: PyTorch implementations of Generative Adversarial Networks. 上記に様々なPyTorch実装や論文のリンクがまとめ…

Bicycle GAN(概要の把握)|DeepLearningを用いた生成モデルの研究を俯瞰する #2

当シリーズでは生成モデルの研究や実装にもフォーカスをあてられればということで、進めていきます。 GitHub - eriklindernoren/PyTorch-GAN: PyTorch implementations of Generative Adversarial Networks. 上記に様々なPyTorch実装や論文のリンクがまとめ…

Auxiliary Classifier GAN(概要の把握)|DeepLearningを用いた生成モデルの研究を俯瞰する #1

DeepLearningの生成モデルへの応用に関しては、2014年の"Generative Adversarial Networks"を始めとして、これまで数多くの研究が行われてきています。生成モデルは結果としてわかりやすくインパクトが強いのに加えて、学習にあたっての不安定性の解消の難し…